
SPECTRA, COMPLEX ORIENTED COHOMOLOGY THEORY, AND FORMAL GROUP LAWS

These are notes for a talk I gave at the Max-Planck Institute for Mathematics in Bonn, for the ”Physics
Math” seminar. The abstract to the talk can be found here. If you find mistakes in the notes (hopefully there
aren’t too many), please contact me at alessandro.nanto3@gmail.com.

1. BACKGROUND AND NOTATIONS

We begin by fixing some notation.

1.1. Topological spaces. Denote by T op a convenient category of topological spaces, for example weakly
Hausdorff, compactly generated spaces, also called k-spaces (see [10]). A convenient category of topolog-
ical spaces is characterized, amongst other things, by the fact that −×X : T op → T op has a right adjoint
H̃om(X ,−) : T op → T op given by mapping Y to the space of continuous maps X → Y with compact-open
topology. Every unbased space X can be turned based by adding a disjoint single point, denote by X+ the
based space X ⊔{∗}. The functor −+ : T op → T op∗ is left adjoint to the functor T op∗ → T op forgetting
the basepoint.

For pointed spaces, we denote products by ∧. Explicitly, given pointed spaces (X ,x) and (Y,y), then X ∧Y
is the product X ×Y with the subspace X ×{y}∪ {x}×Y collapsed to a point (which is then taken as the
basepoint). We also denote coproducts by ∨. Explicitly X ∨Y is the pushout of the diagram

∗ Y

X

(where ∗ is the one-point space). Equivalently, it is X ⊔Y with {x,y} collapsed to a point.
Given a pointed space (X ,x), just like in unbased pointed spaces, the functor −∧X has a right adjoint

H̃om∗(X ,−), which maps a pointed space (Y,y) to the subspace of H̃om(X ,Y ) of basepoint preserving con-
tinuous functions (with the subspace topology).

Remark 1.1. Given points z ∈ X ,w ∈ Y , we’ll write z∧w to mean the point in X ∧Y represented by the pair
(z,y) ∈ X ×Y . In particular, if either z or w is the basepoint of the respective spaces, z∧w is always the
basepoint of X ∧Y .

Remark 1.2. For the n-sphere Sn we always take the one-point compactification of Rn, the point at ∞ acting
as the base point. This is homeomorphic to the usual definition of Sn, but has the advantage that linear group
actions on Rn automatically lift to based actions on Sn. Moreover, the natural homeomorphism Rn ⊕Rm ∼=
Rn+m lifts to a homeomorphism Sn ∧Sm ∼= Sn+m, for any n,m.

Definition 1.1. Given a based space X , we call X ∧ S1 the reduced suspension of X . Sometimes we might
write ΣX for X ∧S1. Also, we might write Ωn for the functor H̃om∗(Sn,−). The isomorphism Sn∧Sm ∼= Sn+m

translated into a natural isomorphism Ωn ◦Ωm ∼= Ωn+m.

Another construction that will be useful is that of mapping cone.

Definition 1.2. Given a based map f : X → Y , we denote by C f the mapping cone, which is the pushout
(I1 ∧A)∨A B, where I1 is the unit interval [0,1] with 1 as basepoint. Explicitly, this is the pushout in T op∗ of
the diagram
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A B

I1 ∧A

f

j

j being the map a 7→ 0∧a.

Remark 1.3. When talking about based CW complexes, the basepoint will always be a 0-cell. This ensures,
for example, that given based CW complexes X ,Y , the subspace X ×{y}∪{x}×Y is a CW subcomplex of
X ×Y and so X ∧Y inherits a based CW structure.

1.2. Groups. Given any natural number n, denote by Σn the (discrete) group of permutations of {1, · · · ,n}.
Given n,m, there is a group homomorphism Σn ×Σm ↪→ Σn+m induced by the identification of {1, · · · ,n+m}
with {1, · · · ,n}

⊔
{1, · · · ,m}. Given a pair (σ ,τ) ∈ Σn ×Σm, denote the resulting permutation in Σn+m by

σ + τ .

Remark 1.4. Σn acts naturally on Rn by permuting coordinates. This action is linear and orthogonal, hence
gives a group homomorphism Σn ↪→ O(n). The same action on Cn gives a group homomorphism Σ ↪→U(n).
By Remark 1.2, the orthogonal action of Σn on Rn transfers to a based, left action on Sn.

Definition 1.3. Let Ab the category of abelian groups and ⊗ the tensor product of abelian groups as Z-
modules. Denote by AbZ the category of Z-graded abelian groups.

2. SPECTRA

Definition 2.1 ([9]). A symmetric spectrum consists of the following data:
(1) A pointed Σn-space Xn, for all n ≥ 0.
(2) A map of pointed spaces σn : Xn ∧S1 → Xn+1, for all n. We’ll refer to the maps σn as structure maps.

such that, for all n,m ≥ 0, the map

Xn ∧Sm Xn+1 ∧Sm−1 · · · Xn+m−1 ∧S1 Xn+m
σn∧id σn+1∧id σn+m−2∧id σn+m−1

is Σn × Σm-equivariant, where Σn × Σm acts on the target Xn+m by restriction of the action by Σn+m. A
morphism of symmetric spectra f : X →Y consists of a Σn-equivariant map fn : Xn →Yn, for every n, that are
compatible with the structure maps, i.e. such that the following diagram commutes:

Xn ∧S1 Xn+1

Yn ∧S1 Yn+1

fn∧S1 fn+1

Denote by S p the category of symmetric spectra.

Definition 2.2. Given a symmetric spectrum X and n ∈ Z, the n-th naive homotopy group of X is defined as
the colimit of the sequence

· · · πn+l(Xl) πn+l+1(Xl+1) · · ·
Kl−1 Kl Kl+1

where Kl is defined as the composition of suspension πn+l(Xl) → πn+l+1(Xl ∧ S1) followed by the induced
map (σl)∗ : πn+l+1(Xl ∧S1)→ πn+l+1(Xl+1). The colimit is denoted π̂n(X).

Remark 2.1. Recall that −∧S1 has a right adjoint given by Ω (the based loop space functor). In particular, the
structure maps Xn ∧S1 → Xn+1 are equivalent to maps Xn → ΩXn+1. A symmetric spectrum is a Ω-spectrum
if Xn → ΩXn+1 is a weak homotopy equivalence, for all n.
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Example 2.1. Given a spectrum X and a pointed topological space K, denote by K ∧X the spectrum with
(K ∧X)n := K ∧Xn and structure map K ∧Xn ∧ S1 K∧σn−−−→ K ∧Xn+1. Also, denote by XK the spectrum with
(XK)n := H̃om∗(K,Xn) and structure map

H̃om∗(K,Xn)∧S1 → H̃om∗(K,Xn ∧S1)
(σn)∗−−−→ H̃om∗(K,Xn+1)

the first map sending ( f ,x) to ( f ∧ x)(t) = f (t)∧ x ∈ Xn ∧ S1. For any space K, the functors (K ∧−,−K) :
S p → S p are adjoint. We denote −S1

: S p → S p by Ω, as in topological spaces.

Example 2.2. Given a morphism f : X → Y of spectra, denote by C f the mapping cone spectrum with
(C f )n := C fn = (I1 ∧Xn)∨Xn Yn. The structure maps are defined using that −∧ S1 commutes with colimits,
being a left adjoint, hence

C fn ∧S1 ∼= (I1 ∧Xn ∧S1)∨Xn∧S1 (Yn ∧S1)→ (I1 ∧Xn+1)∨Xn+1 Yn+1

the last map induced by the structure maps of the spectra X ,Y .

Example 2.3. Denote by S the sphere spectrum with Sn := Sn and structure map the afromentioned based
homeomorphism Sn ∧S1 ∼= Sn+1. Given a topological space X , denote by X ∧S, called the suspension spec-
trum of X . In particular, we write Sn := Sn ∧ S. The induced functor Σ∞ : T op∗ → S p is left adjoint to
Ω∞ : X 7→ X0, in particular HomS p(S,X) is isomorphic to the set of points of X0.

Example 2.4. Given a based topological space X and abelian group A, denote by A[X ] the free abelian group
generated by finite, A-linear combinations of the points of X , modulo the A-linear subgroup generated by the
basepoint. The topology of this space is determined by the sequence of maps

An ×Xn → A[X ], (a1, · · · ,an,x1, · · · ,xn) 7→ ∑
k

ak · xk

For all n, the space A[Sn] is an Eilenberg-Mac Lane space of type (A,n), see [2]. Finally, denote by HA the
Eilenberg-Mac Lane spectrum with (HA)n := A[Sn] and structure maps A[Sn]∧ S1 → A[Sn ∧ S1] ∼= A[Sn+1],
the first being

(∑
x

ax · x,y) 7→ ∑
x

ax · (x∧ y)

Using that A[Sn] is an Eilenberg-Mac Lane space of type (A,n), we can deduce that π̂n(HA) ∼= A, if n = 0,
and vanishes otherwise.

Example 2.5. Given a compact topological group G, denote by EG the total space of the universal principal
G-bundle, which can be constructed as the geometric realization of the simplicial space [n] 7→ Gn+1, where
face maps are induced by projections. Consider G = O(n) (as O(0) we take the trivial group), the group of
orthogonal automorphisms of Rn, which acts on Sn via the one-point compactification of the left action on
Rn. Denote by MO the real Thom spectrum with

MOn := EO(n)+∧O(n) Sn

which is the quotient of EO(n)+∧Sn by the right O(n) action induced by the right action on EO(n)+ and the
left action on Sn. The group O(n) then acts on MOn by acting on EO(n)+ on the left and so does Σn via the
inclusion Σn → O(n) induced by the Σn action on Rn by permutation of the coordinates.

Letting O(n) act on the first n components of Rn+1 induces a group homomorphism O(n) → O(n+ 1),
which then induces a continuous map EO(n)→ EO(n+1). The structure map of MO is given by

(EO(n)+∧O(n) Sn)∧S1 ∼= EO(n)+∧O(n) Sn+1 → EO(n+1)+∧O(n+1) Sn+1

where Sn+1 in the middle term is a O(n)-space via the afromentioned inclusion O(n) → O(n + 1). The
isomorphism is given by Sn ∧S1 ∼= Sn+1, which is O(n)-equivariant.
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To construct the complex Thom spectrum MU , we need to work a bit harder. The issue stems from the
fact that complex spheres correspond to even dimensional real spheres.

Example 2.6. Given a vector space V , denote by SV its one-point compactification (in particular, SR
n
= Sn).

Denote by M̃U sequence of spaces M̃Un := EU(n)+∧U(n) SC
n
. As in the real case, the Σn action is induced

by permutation of the factors in Cn and acts on M̃Un by left action on EU(n)+. Denote by MU the complex
Thom spectrum with

MUn = H̃om∗(Sn,M̃Un) = Ω
n(M̃Un)

with the action of Σn by conjugation. Consider then the map σ̃n : M̃Un∧SC → M̃Un+1 defined as the structure
maps for the real Thom spectrum (like for O(n), there is an embedding U(n)→U(n+1) and corresponding
map EU(n)→ EU(n+1)). The structure maps of MU are then defined as via the map

MUn ∧S2 = H̃om∗(Sn,M̃Un)∧SC → H̃om∗(Sn,M̃Un ∧SC)
(σ̃n)∗−−−→ H̃om∗(Sn,M̃Un+1)

Using S2 ∼= S1∧S1 and the adjunction (S1∧−,Ω), together with the natural isomorphism Ω◦Ωn ∼= Ωn+1, we
get the desired structure map MUn ∧S1 → Ωn+1(M̃Un+1) = MUn+1.

2.1. Smash product. Contrary to a simpler model for spectra (that is, sequential spectra), symmetric spec-
tra have a symmetric monoidal structure given by smash product, of which S, the sphere spectrum, is the
monoidal unit. The explicit construction of ∧ can be found in [9]. Here we simply recall the data of a
commutative monoid in this structure, also called a ring spectrum.

Definition 2.3. A ring spectrum structure on a spectrum X consists of the following data:
(1) A unit element u ∈ X0 (equivalent to a pointed map S0 → X0 or spectra morphism S→ X).
(2) For all n,m, a Σn ×Σm-equivariant multiplication map µn,m : Xn ∧Xm → Xn+m.

subject to a certain set of conditions, such as associativity, unitarity, etc.

Example 2.7. Consider the sphere spectrum S, take as unit S0 → S0 = S0 the identity. As multiplication map
take the homeomorphism Sn∧Sm ∼= Sn+m. The sphere spectrum acts as Z for abelian groups, in that, for every
ring spectrum X , there is only one right spectrum homomorphism S→ X , namely the one induced by the unit
element u.

Example 2.8. Given an abelian group A underlying a ring, recall the definition of the Eilenberg-Mac Lane
spectrum HA. The unit 1 ∈ A induces a map S0 → A[S0] by x 7→ 1 · x. Multiplication are defined as A[Sn]∧
A[Sm]→ A[Sn ∧Sm]∼= A[Sn+m], the first map being

(∑
x

ax · x,∑
y

ay · y) 7→ ∑
x,y
(axay) · (x∧ y)

Example 2.9. Recall the real Thom spectrum MO. The unit is given by the identity S0 → MO0 = S0. The
multiplication map µn,m : MOn∧MOm → MOn+m is induced by isomorphism Rn⊕Rm ∼=Rn+m together with
the morphism

EO(n)+∧EO(m)+ ∼= E(O(n)+∧O(m)+)→ EO(n+m)+

the last map induced by the group homomorphism O(n)×O(m) → O(n+m), while the homeomorphism
comes from geometric realization preserving products.

The same construction induces multiplication maps µ̃n,m : M̃Un ∧ M̃Um → M̃Un+m, which induces a mul-
tiplicative struture on MU as the composition

H̃om∗(Sn,M̃Un)∧ H̃om∗(Sm,M̃Um)
∧−→ H̃om∗(Sn+m,M̃Un ∧ M̃Um)

(µ̃n,m)∗−−−−→ H̃om∗(Sn+m,M̃Un+m)

The unit of MU is also simply the identity S0 → MU0 = Hom∗(S0,S0)∼= S0.
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2.2. Stable homotopy groups, stable weak equivalences and cohomology theories. Symmetric spectra
are one of the many models for the stable homotopy category SHC. Originally constructed by Boardman
([3, 1]). This category comes with a symmetric monoidal structure, but proving the formal properties of this
product is a lengthy process ([1]). Moreover, topologists attempted to construct a category X that would
return the stable homotopy category upon localization at some class of weak equivalences, but that was
symmetric monoidal before localization, symmetric spectra satisfying the description.

The downside of symmetric spectra is that introducing stable weak equivalences is not as straight-forward
as in other models (such as sequential or orthogonal spectra). For example, if we take π̂-equivalences (mor-
phisms inducing isomorphisms of naive homotopy groups) and localize S p at them, we don’t obtain SHC.
However, we can introduce stable weak equivalences by first looking at simplicial symmetric spectra (sym-
metric spectra with pointed simplicial sets instead of pointed spaces), then use the based singular simplicial
set Sing : T op∗ → sSet∗ to transfer back stable weak equivalences to S p (see [4, §6.2]). The silver lining
is that there is a full subcategory of spectra where stable equivalences are the same as π̂-equivalences, these
are semistable spectra ([9]) and every example given here is a semistable spectrum. In particular, the naive
homotopy groups of semistable spectra are the genuine homotopy groups.

Remark 2.2. The smash product ∧ and suspension S1 ∧− on S p descends to a derived smash product ∧L

and derived suspension S1 ∧L − on SHC. Moreover, S1 ∧− is an equivalence of categories, hence there
is, for every n ≥ 0, a spectrum solving Sn ∧L X ∼= S, we call this spectrum (unique up to isomorphism)
S−n. Moreover, SHC has binary products and coproducts. Finally, SHC is additive (enriched over abelian
groups).

Now, the stable homotopy category, similar to the derived category of an abelian category, underlies the
structure of a triangulated category. The definition of a triangulated category can be found in [5], but it basi-
cally consists of an additive category T with a equivalence Σ : T → T together with a class of distinguished
triangles. A triangle consists of a diagram

X Y Z ΣX
f g h

A morphism of triangles is a commutative diagram as follows

X Y Z ΣX

X ′ Y ′ Z′ ΣX ′

α Σα

Definition 2.4. An elementary distinguished triangle in SHC is the image under λ of a cofiber sequence

X
f−→ Y → C f → S1 ∧X , for any morphism f (recall Example 2.2). A distinguished triangle in SHC is any

triangle isomorphic to an elementary distinguished triangle.

Definition 2.5. An additive functor E : SHCop → Ab is cohomological if it preserves products and, for every
distinguished triangle X →Y → Z → S1 ∧L X , the induced sequence E(S1 ∧L X)→ E(Z)→ E(Y )→ E(X) is
exact. Given n ∈ Z and a spectrum X , we write En(X) := E(S−n ∧L X). Given a pointed topological space K,
define E(K) := E(S∧K)

Theorem 2.1. Every cohomological functor is isomorphic to one of the form HomSHC(−,E), for some
spectrum E.

In particular, if E underlies a ring spectrum, the presheaf HomSHC(−,E) inherits a multiplicative structure:
Up to stable weak equivalence, the multiplicative structure of E in S p transfers to a multiplicative struc-
ture of E in SHC ([9, Theorem 3.1]), meaning λ : S p → SHC is lax monoidal. Given spectra X ,Y , the
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multiplication µ : E ∧L E → E in SHC induces

E(X)⊗E(Y )→ HomSHC(X ∧L Y,E ∧L E)
µ∗−→ HomSHC(X ∧L Y,E) = E(X ∧L Y )

A cohomological functor equipped with a pairing E(X)⊗E(Y ) → E(X ∧L Y ) is called multiplicative. In
particular, since S∧L S ∼= S, the group E(S) is actually a ring, with the unit S → E of the ring spectrum
translating into the unit of E(S).

Lemma 2.1. E(S)∼= π0(E). More generally, En(S)∼= π−n(E).

Definition 2.6. Given a cohomological functor E : SHCop → Ab and a pointed space X , denote by Ẽ(X) :=
E(X ∧S). In particular, Ẽ(S0) = E(S)∼= π0(E).

3. COMPLEX ORIENTED COHOMOLOGY THEORIES

Given a vector bundle F → X , we identify X with its image under the zero section. Given a point x ∈ X ,
denote by Fx its fiber.

Definition 3.1. Given a vector bundle F → X , a Thom class consists of a cohomology class t ∈ Hn(F,F −
X ,Z) such that, the restriction t|Fx ∈ Hn(Fx,Fx −{0},Z)∼= Hn(Rn,Rn −{0},Z)∼= Z is one of the generators
of Z.

Remark 3.1. Thom classes are connected to the notion of Thom space of a vector bundle: Let F → X be a
vector bundle, then MF := F ∪{∞} is the one-point compactification of the total space of the bundle. The
pair (MF,∞) is homotopy equivalent to the pair (F,F −X), hence the existence of a Thom class is equivalent
to the existence of a class in t ∈ Hn(MF,∞,Z) = H̃n(MF,Z) such that, for every x ∈ X , the pullback of t
along the inclusion Sn ∼= Fx ∪{∞} ⊆ MF induces a generator of H̃n(S1,Z)∼= Z.

The existence of a Thom class is equivalent to orientability of the bundle E, in the sense that GL(F)→ X
(the frame bundle of F) has two connected components, see [11]. Now, not all real bundles have a Thom
class (since not all are orientable), but all complex vector bundles have orientable underlying real bundles.
The point of a complex oriented cohomology theory is that every complex bundle F → X has a natural
choice of Thom class tF (see [7, Definition 2.22]). By the splitting principle ([11]), existence of Thom classes
for all complex vector bundles can be reduced to complex line bundles first, then reduced to existence of a
Thom class for the universal line bundle L = EU(1)×U(1)C→CP∞ = BU(1) (where EU(1) is the universal
principal U(1)-bundles).

Theorem 3.1 ([1, Example 2.1]). The zero section z : CP∞ → ML is a weak homotopy equivalence. In
particular, the choice of a Thom class ∈ H̃2(ML,Z) is equivalent to the choice of a class ∈ H̃2(CP∞,Z) such
that, its pullback along the sphere S2 = CP1 → CP∞ is a generator for H̃2(S2,Z)≃ Z.

Proof. First of all, CP∞ is connected and all fibers of L are homeomorphic (and so their one-point compactifi-
cations are based homeomorphic), so the condition on a Thom class (generates the cohomology of the sphere
S2 ∼= MLx ↪→ ML under pullback) can be verified by looking at one point. In particular, we take that point to
be [C] ∈ CP∞ (the complex line itself, viewed as a point of the infinite complex projective space).

The point [C] then induces a map j : CP1 →CP∞ and a fiber map i : C→ L[C] ⊆ L, and so Mi : CP1 → ML.
Under the weak homotopy equivalence CP∞ → ML, the map j and Mi coincide (see [6, Theorem 3.9]). In
particular, t ∈ H̃2(ML,Z) is a Thom class, if and only if, the corresponding class c = z∗t ∈ H̃2(CP∞,Z)
satisfies that j∗c ∈ H̃2(CP1,Z)∼= Z is a generator. □

The class c ∈ H̃2(CP1,Z) is nothing more than the first Chern class of the canonical line bundle. In
general, a complex orientable cohomology theory is a generalized cohomology theory with the choice of a
generalized first Chern class.
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Definition 3.2. Given a ring spectrum E (we denote by E also the corresponding cohomology theory), a
complex orientation consists of a class cE

1 ∈ Ẽ2(CP∞) such that, its pullback along S2 ∼= CP1 → CP∞ is a
generator for Ẽ2(S2)∼= Ẽ(S0)∼= π0(E). If a complex orientation exists, we call E complex orientable.

Remark 3.2. The isomorphism Ẽ2(S2) ∼= Ẽ(S0) comes from the suspension isomorphism Ek(Sn ∧ X) ∼=
E(S−k ∧ Sn ∧X) ∼= E(S−k+n ∧X) together with S2 ∧ S ∼= S2 (plus, recall that E0 is E, by definition, since
S0 = S).

The existence of a complex orientation has a number of consequences. First, any complex vector bundle
F → X have a E-Thom class, i.e. a class t ∈ Ẽn(MF) such that pullback along any fiber ix : Sn ∼= MFx ↪→ MF
is a generator of Ẽn(Sn) ∼= π0(E). Next, we can fully calculate the cohomology of CP∞ as follows: Recall
that E being a ring spectrum implies that π0(E) is a ring and the 0-component of the graded ring π(E) =⊕

n∈Z πn(E). Let CP∞
+ = CP∞

⊔
{+}, where + is the new basepoint, then we can pullback cE

1 along the
natural map CP∞

+ → CP∞ (sending + to the original basepoint of CP∞) to get a class that we also write as
cE

1 ∈ Ẽ2(CP∞
+ ).

Lemma 3.1. The class cE
1 ∈ Ẽ2(CP∞

+ ) induces an isomorphism π(E)JxK → Ẽ∗(CP∞
+ ) of π(E)-modules.

For brevity, we’ll write E∗(CP∞) to mean Ẽ∗(CP∞
+ ). Finally, there is a importart example of complex

oriented ring spectrum: The complex Thom spectrum. Notice that ML, the Thom spectra of EU(1)×U(1)C
is exactly M̃U1, in particular the zero section is a homotopy equivalence z : CP∞ → M̃U1. This map can be
used to construct a morphism of spectra representing a class in cMU

1 ∈ HomSHC(S−2CP∞,MU) satisfying the
condition for complex orientations.

Theorem 3.2. Given a ring spectrum E, a ring spectra morphism f : MU → E induces a complex orientation
cE

1 = f∗(cMU
1 ), where f∗ is the post-composition map HomSHC(−,MU)→ HomSHC(−,E). This map

Hom(MU,E)→{complex orientations on E}
is a natural bijection.

In this sense, (MU,cMU
1 ) is the universal complex oriented ring spectrum.

4. FORMAL GROUP LAW

Now, we look at the final piece. Formal group laws. In the case of Z-valued singular cohomology, the first
Chern class is the usual one. In particular, it satisfies the additional property that

c1(L⊗K) = c1(L)+ c1(K)

for any two line bundles L,K (over some space X). This is not a property that a generic Chern class cE
1 might

satisfy (see [8, Example 7]), but cE
1 (L⊗K) will be some π(E)-linear combination of powers of cE

1 (L) and
cE

1 (K). To see this, consider the map m : CP∞ ×CP∞ → CP∞ given by tensor product of lines: A point
in CP∞ is represented by some non-zero point (z0, · · · ,zn) ∈ Cn+1, for some n, then m is defined by taking
representatives (z0, · · · ,zn) and (w0, · · · ,wm) and return the point in CP∞ represented by

(ziw j)i, j ∈ C(n+1)(m+1)

If we identify line bundles with homotopy classes of maps into CP∞, the monoid structure induced on homo-
topy classes by m is equivalent to the monoidal structure given by tensor product of line bundles.

Take now a complex oriented cohomology theory, we saw that E∗(CP∞) ∼= π(E)JxK, with the choosen
orientation cE

1 being a generator. Then E∗(CP∞×CP∞)∼= π(E)Jx,yK, where generators now are the pullback
of cE

1 along the two projections p1, p2 : CP∞ ×CP∞ → CP∞. If we pullback cE
1 along m, we obtain an

expression
F(p∗1cE

1 , p∗2cE
1 ) = m∗(cE

1 )
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Definition 4.1. Given a ring R, a formal group law is a formal power series F ∈ RJx,yK such that:

F(x,0) = x, F(x,F(y,z)) = F(F(x,y),z)

and F(x,y) is invariant under the automorphism of RJx,yK exchanging x,y. If R is graded, a graded formal
group law is one where the coefficient of an,k ∈ R has degree 2k+2n−2, for all n,k.

Theorem 4.1. The formal power serie F(x,y) is a graded formal group law for R = π(E).

The reason for m∗(cE
1 ) to be a graded formal group law boils down to CP∞ being a homotopy commutative,

topological monoid, where the basepoint acts as the unit of m, see [7]. Therefore, a complex orientation
induces a graded FGL on π(E). In particular, the complex orientation on MU induces a formal group law for
π(MU). This way, given a ring map MU →E, we can first pushforward the complex orientation on MU to one
on E, then consider the associated graded FGL for π(E), or we can take the induced map π(MU)→ π(E) and
the formal group law FMU ∈ π(MU)Jx,yK and base change to a formal group law on π(E)⊗(π(MU)Jx,yK)∼=
π(E)Jx,yK. This two processes are one and the same.

Theorem 4.2 (Quillen). Given a (graded) ring R, morphisms of (graded) rings π(MU)→ R are in bijection
with (graded) formal group laws for R. The formal group law FMU induced by cMU

1 is the universal (graded)
FGL.
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